Social Media Platforms - HLD Architecture ๐ฑ
Core Conceptโ
Key Insight: Social media platforms are content distribution systems at massive scale, optimized for real-time engagement, personalized feeds, and viral content propagation while handling billions of users and posts.
1. Common Social Media Challengesโ
The Scale Problemโ
Daily Active Users:
โโโ Facebook: 2+ billion
โโโ Instagram: 1+ billion
โโโ Twitter: 400+ million
โโโ LinkedIn: 300+ million
โโโ TikTok: 1+ billion
Content Volume:
โโโ 95 million photos/day (Instagram)
โโโ 500 million tweets/day (Twitter)
โโโ 4+ billion posts/day (Facebook)
โโโ 1 billion videos/day (TikTok)
Core Technical Challengesโ
| Challenge | Impact | Complexity |
|---|---|---|
| Feed Generation | Personalized content for billions | O(users ร content) scaling |
| Real-time Updates | Instant notifications/reactions | WebSocket connections at scale |
| Content Storage | Petabytes of media files | CDN + blob storage optimization |
| Search & Discovery | Find relevant content/people | Distributed search indexing |
| Viral Content Handling | Traffic spikes during trending | Auto-scaling + load balancing |
2. Instagram Architectureโ
Core Componentsโ
Instagram HLD:
โโโ User Service (profiles, authentication)
โโโ Media Service (photo/video upload & processing)
โโโ Feed Service (timeline generation)
โโโ Activity Service (likes, comments, shares)
โโโ Discovery Service (explore, hashtags)
โโโ Messaging Service (direct messages)
โโโ Notification Service (push notifications)
Feed Generation Strategyโ
Problem: Generate personalized feeds for 1B+ users in real-time
Solution - Hybrid Approach:
1. Pull Model (Timeline Service)
โโโ User requests feed
โโโ Query followed users' recent posts
โโโ Rank by engagement algorithm
โโโ Return top N posts
2. Push Model (Fanout Service)
โโโ User posts new content
โโโ Push to all followers' timelines
โโโ Pre-compute timelines for active users
โโโ Store in timeline cache
3. Hybrid Model (Best of Both)
โโโ Push for users with <1M followers
โโโ Pull for celebrities/influencers
โโโ Machine learning ranking
โโโ Real-time personalization
Content Delivery Architectureโ
Media Upload Flow:
User App โ CDN Edge โ Media Processing โ Multiple Resolutions โ Global CDN
Processing Pipeline:
โโโ Image: Generate thumbnails (150x150, 320x320, 640x640, 1080x1080)
โโโ Video: Transcode to multiple bitrates (240p, 480p, 720p, 1080p)
โโโ Compression: Optimize file sizes without quality loss
โโโ Storage: Distribute across geographic regions
Key Design Decisionsโ
- Photo-First Architecture: Optimized for visual content
- Chronological + Algorithmic Feed: Balance recency with engagement
- Stories Feature: Ephemeral content reduces storage costs
- Reels Integration: Short-form video competition with TikTok
3. LinkedIn Architectureโ
Professional Network Focusโ
LinkedIn HLD:
โโโ Profile Service (professional profiles, skills)
โโโ Connection Service (professional networking)
โโโ Feed Service (professional content timeline)
โโโ Job Service (job postings, applications)
โโโ Messaging Service (professional communication)
โโโ Learning Service (courses, certifications)
โโโ Sales Navigator (B2B lead generation)
โโโ Analytics Service (profile views, post metrics)
LinkedIn Feed Algorithmโ
Goal: Surface professionally relevant content
Ranking Factors:
Content Scoring:
โโโ Professional Relevance (40%)
โ โโโ Industry alignment
โ โโโ Job function similarity
โ โโโ Skill overlap
โ โโโ Company connections
โโโ Engagement Signals (30%)
โ โโโ Comments > Likes > Views
โ โโโ Share rate and viral coefficient
โ โโโ Time spent reading
โ โโโ Click-through rates
โโโ Recency & Freshness (20%)
โ โโโ Post timestamp
โ โโโ Trending topics in network
โ โโโ Real-time engagement velocity
โโโ Personal Connection (10%)
โโโ 1st/2nd/3rd degree connections
โโโ Direct message history
โโโ Profile interaction frequency
Professional Graph Architectureโ
Relationship Mapping:
โโโ 1st Degree: Direct connections (mutual acceptance)
โโโ 2nd Degree: Friends of friends (network expansion)
โโโ 3rd Degree: Extended network reach
โโโ Company Connections: Current/former colleagues
โโโ Educational Connections: Alumni networks
โโโ Industry Connections: Professional similarity
Key Differentiatorsโ
- B2B Focus: Professional content prioritization
- Skill-Based Matching: Expertise and endorsements
- Job Marketplace Integration: Recruitment platform
- Long-Form Content: Articles and professional insights
4. Twitter/X Architectureโ
Real-Time Information Networkโ
Twitter HLD:
โโโ Tweet Service (compose, publish, retrieve)
โโโ Timeline Service (home, mentions, lists)
โโโ Trend Service (hashtags, viral content)
โโโ Search Service (real-time tweet search)
โโโ Notification Service (mentions, likes, retweets)
โโโ Direct Message Service (private messaging)
โโโ Media Service (photos, videos, GIFs)
โโโ Advertising Service (promoted tweets/accounts)
Timeline Generation - Fan-out Architectureโ
Challenge: Deliver tweets to millions of followers instantly
Fan-out Strategies:
1. Fan-out on Write (Push)
โโโ User tweets โ Push to all followers' timelines
โโโ Pros: Fast read times, pre-computed timelines
โโโ Cons: Expensive for users with millions of followers
โโโ Used for: Regular users (<10K followers)
2. Fan-out on Read (Pull)
โโโ User requests timeline โ Pull from followed accounts
โโโ Pros: Efficient for high-follower accounts
โโโ Cons: Slower read times, compute on demand
โโโ Used for: Celebrities, verified accounts
3. Hybrid Approach
โโโ Most users: Fan-out on write
โโโ Celebrities: Fan-out on read
โโโ Mixed timelines: Merge cached + real-time content
โโโ Smart caching based on user activity patterns
Real-Time Featuresโ
Live Updates Architecture:
โโโ WebSocket connections for active users
โโโ Server-Sent Events for timeline updates
โโโ Push notifications for mobile apps
โโโ Real-time trending algorithm updates
โโโ Live event integration (sports, news, politics)
Trending Algorithmโ
Objective: Identify viral content and emerging topics in real-time
Factors:
- Tweet volume velocity (mentions per minute)
- Engagement rate acceleration
- Geographic distribution of mentions
- Influencer participation
- Breaking news detection
5. Facebook Architectureโ
Multi-Service Platformโ
Facebook HLD:
โโโ User Service (profiles, friends, family)
โโโ News Feed Service (algorithmic timeline)
โโโ Post Service (status, photos, videos, stories)
โโโ Reaction Service (likes, reactions, comments)
โโโ Group Service (communities, discussions)
โโโ Page Service (business pages, fan engagement)
โโโ Event Service (social events, RSVP)
โโโ Marketplace Service (local commerce)
โโโ Messenger Service (chat, voice, video calls)
โโโ Gaming Service (social games, streaming)
โโโ Advertising Service (targeted ads, business tools)
News Feed Ranking Algorithmโ
Goal: Maximize user engagement and time spent on platform
EdgeRank Algorithm Evolution:
Modern Feed Ranking (2024):
โโโ Relationship Score (35%)
โ โโโ Interaction frequency with poster
โ โโโ Message history and mutual friends
โ โโโ Profile visits and photo tags
โ โโโ Real-world relationship indicators
โโโ Content Type Performance (25%)
โ โโโ Video content prioritization
โ โโโ Live video boost during broadcast
โ โโโ Image posts vs text-only content
โ โโโ Link click-through rates
โโโ Recency & Timeliness (20%)
โ โโโ Post timestamp and decay function
โ โโโ Trending topics and viral content
โ โโโ Breaking news and real-time events
โ โโโ User's active hours optimization
โโโ Individual Preferences (20%)
โโโ Content category preferences
โโโ Historical engagement patterns
โโโ Hiding/unfollowing behavior
โโโ Time spent per content type
Social Graph Storageโ
Friend Network Architecture:
โโโ Adjacency Lists: User connections storage
โโโ Graph Databases: Neo4j for complex relationship queries
โโโ Caching Layer: Redis for frequent friend lookups
โโโ Sharding Strategy: Geographic and social cluster-based
โโโ Privacy Controls: Granular visibility and sharing settings
6. Common Architectural Patternsโ
Feed Generation Patternsโ
| Pattern | Use Case | Pros | Cons |
|---|---|---|---|
| Push (Fan-out on Write) | Regular users | Fast reads | Expensive writes for influencers |
| Pull (Fan-out on Read) | Celebrities | Efficient writes | Slower reads |
| Hybrid | Mixed user base | Balanced performance | Complex implementation |
Content Storage Architectureโ
Media Storage Strategy:
โโโ Hot Storage (Recent, popular content)
โ โโโ SSD-based storage for fast access
โ โโโ Multiple CDN regions
โ โโโ High replication factor
โโโ Warm Storage (Older, moderate access)
โ โโโ HDD-based storage
โ โโโ Regional CDN caching
โ โโโ Reduced replication
โโโ Cold Storage (Archive, rare access)
โโโ Glacier/tape storage
โโโ Single region backup
โโโ Minimal replication
Notification System Designโ
Push Notification Architecture:
โโโ Event Triggers (likes, comments, mentions, messages)
โโโ User Preference Engine (notification settings)
โโโ Delivery Channels (iOS/Android push, email, SMS, web)
โโโ Rate Limiting (prevent notification spam)
โโโ Personalization (send time optimization)
โโโ Analytics (delivery rates, engagement metrics)
7. Search & Discovery Systemsโ
Search Architectureโ
Social Media Search Components:
โโโ Real-time Indexing (new posts/profiles)
โโโ Full-text Search (Elasticsearch/Solr)
โโโ People Search (fuzzy matching, social graph)
โโโ Hashtag/Trend Search (real-time aggregation)
โโโ Semantic Search (ML-based content understanding)
โโโ Personalized Results (user context and history)
Recommendation Enginesโ
Content Discovery Strategies:
- Collaborative Filtering: "Users like you also liked..."
- Content-Based Filtering: Similar content to user's interests
- Social Signals: Friends' activities and recommendations
- Trending Content: Viral and popular posts
- Geographic Relevance: Location-based content
- Temporal Patterns: Time-sensitive content optimization
8. Scalability & Performance Patternsโ
Database Architectureโ
Social Media Data Patterns:
โโโ User Data (RDBMS)
โ โโโ MySQL/PostgreSQL for ACID compliance
โ โโโ User profiles, settings, relationships
โ โโโ Master-slave replication
โโโ Content Data (NoSQL)
โ โโโ MongoDB/Cassandra for horizontal scaling
โ โโโ Posts, comments, reactions
โ โโโ Eventually consistent
โโโ Timeline Data (Cache)
โ โโโ Redis/Memcached for speed
โ โโโ Pre-computed user timelines
โ โโโ TTL-based expiration
โโโ Media Files (Object Storage)
โโโ S3/GCS for blob storage
โโโ CDN distribution
โโโ Geographic replication
Caching Strategiesโ
Multi-Layer Caching:
- Browser Cache: Static assets (CSS, JS, images)
- CDN Cache: Media files and popular content
- Application Cache: User sessions, frequent queries
- Database Cache: Query result caching
- Timeline Cache: Pre-computed user feeds
Load Balancingโ
Traffic Distribution:
โโโ DNS Load Balancing (geographic routing)
โโโ Layer 7 Load Balancing (application-aware)
โโโ API Gateway (rate limiting, authentication)
โโโ Microservice Mesh (service-to-service)
โโโ Database Load Balancing (read/write separation)
9. Real-Time Featuresโ
Live Updates Architectureโ
Real-Time Communication:
โโโ WebSocket Servers (persistent connections)
โโโ Server-Sent Events (one-way updates)
โโโ Message Queues (Kafka, RabbitMQ)
โโโ Pub/Sub Systems (Redis, Apache Pulsar)
โโโ Push Notification Services (FCM, APNS)
Event-Driven Architectureโ
Key Events:
- User actions (post, like, comment, share)
- System events (trending detection, spam filtering)
- External events (breaking news, sports scores)
- Scheduled events (content cleanup, analytics)
10. Content Moderation & Safetyโ
Automated Content Moderationโ
Multi-Layer Moderation:
โโโ Upload Filters
โ โโโ Image recognition (inappropriate content)
โ โโโ Text analysis (hate speech, spam)
โ โโโ Video content scanning
โ โโโ Audio content analysis
โโโ Post-Upload Monitoring
โ โโโ User reporting systems
โ โโโ Automated flagging algorithms
โ โโโ Community-based moderation
โ โโโ Expert human review
โโโ Behavioral Analysis
โ โโโ Bot detection algorithms
โ โโโ Fake account identification
โ โโโ Coordinated inauthentic behavior
โ โโโ Spam pattern recognition
โโโ Global Policy Enforcement
โโโ Regional content compliance
โโโ Age-appropriate content filtering
โโโ Misinformation detection
โโโ Violence and extremism prevention
11. Analytics & Machine Learningโ
User Behavior Analyticsโ
Data Collection:
โโโ User Interactions (clicks, scrolls, time spent)
โโโ Content Performance (engagement rates, reach)
โโโ Social Graph Analysis (connection patterns)
โโโ Device and Platform Usage
โโโ Geographic and Temporal Patterns
ML Applications:
โโโ Feed Ranking Algorithms
โโโ Content Recommendation Systems
โโโ Ad Targeting and Optimization
โโโ Spam and Abuse Detection
โโโ Trend Prediction and Analysis
โโโ User Lifetime Value Prediction
12. Platform-Specific Innovationsโ
Instagramโ
- Stories Architecture: Ephemeral content with 24-hour TTL
- Reels System: Short-form video with music integration
- Shopping Integration: E-commerce within social posts
- AR Filters: Real-time face tracking and augmentation
LinkedInโ
- Professional Graph: Skill-based connections and endorsements
- Content Quality Filters: Professional relevance scoring
- Job Matching Engine: AI-powered recruitment platform
- Learning Platform Integration: Course completion tracking
Twitter/Xโ
- Real-Time Trending: Sub-minute trend detection
- Character Limit Optimization: Concise content prioritization
- Thread Architecture: Connected tweet sequences
- Spaces Integration: Live audio conversation platform
Facebookโ
- Multi-App Integration: WhatsApp, Instagram, Messenger sync
- VR/AR Integration: Metaverse platform development
- Marketplace Platform: Local commerce integration
- Gaming Ecosystem: Social gaming and streaming
Key Architecture Principlesโ
โ Event-Driven Design: Real-time updates and notifications โ Microservices Architecture: Independent service scaling โ Content-First Storage: Optimize for media-heavy workloads โ Feed Personalization: ML-driven content ranking โ Global CDN Strategy: Low-latency content delivery โ Horizontal Scalability: Handle traffic spikes and growth โ Real-Time Processing: Live updates and trending detection โ Privacy by Design: User data protection and control
Bottom Line: Social media platforms are complex distributed systems that must balance personalization, real-time interaction, content discovery, and safety at unprecedented scale while maintaining sub-second response times for billions of daily active users.