Skip to main content

Social Media Platforms - HLD Architecture ๐Ÿ“ฑ

Core Conceptโ€‹

Key Insight: Social media platforms are content distribution systems at massive scale, optimized for real-time engagement, personalized feeds, and viral content propagation while handling billions of users and posts.


1. Common Social Media Challengesโ€‹

The Scale Problemโ€‹

Daily Active Users:
โ”œโ”€โ”€ Facebook: 2+ billion
โ”œโ”€โ”€ Instagram: 1+ billion
โ”œโ”€โ”€ Twitter: 400+ million
โ”œโ”€โ”€ LinkedIn: 300+ million
โ””โ”€โ”€ TikTok: 1+ billion

Content Volume:
โ”œโ”€โ”€ 95 million photos/day (Instagram)
โ”œโ”€โ”€ 500 million tweets/day (Twitter)
โ”œโ”€โ”€ 4+ billion posts/day (Facebook)
โ””โ”€โ”€ 1 billion videos/day (TikTok)

Core Technical Challengesโ€‹

ChallengeImpactComplexity
Feed GenerationPersonalized content for billionsO(users ร— content) scaling
Real-time UpdatesInstant notifications/reactionsWebSocket connections at scale
Content StoragePetabytes of media filesCDN + blob storage optimization
Search & DiscoveryFind relevant content/peopleDistributed search indexing
Viral Content HandlingTraffic spikes during trendingAuto-scaling + load balancing

2. Instagram Architectureโ€‹

Core Componentsโ€‹

Instagram HLD:
โ”œโ”€โ”€ User Service (profiles, authentication)
โ”œโ”€โ”€ Media Service (photo/video upload & processing)
โ”œโ”€โ”€ Feed Service (timeline generation)
โ”œโ”€โ”€ Activity Service (likes, comments, shares)
โ”œโ”€โ”€ Discovery Service (explore, hashtags)
โ”œโ”€โ”€ Messaging Service (direct messages)
โ””โ”€โ”€ Notification Service (push notifications)

Feed Generation Strategyโ€‹

Problem: Generate personalized feeds for 1B+ users in real-time

Solution - Hybrid Approach:

1. Pull Model (Timeline Service)
โ”œโ”€โ”€ User requests feed
โ”œโ”€โ”€ Query followed users' recent posts
โ”œโ”€โ”€ Rank by engagement algorithm
โ””โ”€โ”€ Return top N posts

2. Push Model (Fanout Service)
โ”œโ”€โ”€ User posts new content
โ”œโ”€โ”€ Push to all followers' timelines
โ”œโ”€โ”€ Pre-compute timelines for active users
โ””โ”€โ”€ Store in timeline cache

3. Hybrid Model (Best of Both)
โ”œโ”€โ”€ Push for users with <1M followers
โ”œโ”€โ”€ Pull for celebrities/influencers
โ”œโ”€โ”€ Machine learning ranking
โ””โ”€โ”€ Real-time personalization

Content Delivery Architectureโ€‹

Media Upload Flow:
User App โ†’ CDN Edge โ†’ Media Processing โ†’ Multiple Resolutions โ†’ Global CDN

Processing Pipeline:
โ”œโ”€โ”€ Image: Generate thumbnails (150x150, 320x320, 640x640, 1080x1080)
โ”œโ”€โ”€ Video: Transcode to multiple bitrates (240p, 480p, 720p, 1080p)
โ”œโ”€โ”€ Compression: Optimize file sizes without quality loss
โ””โ”€โ”€ Storage: Distribute across geographic regions

Key Design Decisionsโ€‹

  • Photo-First Architecture: Optimized for visual content
  • Chronological + Algorithmic Feed: Balance recency with engagement
  • Stories Feature: Ephemeral content reduces storage costs
  • Reels Integration: Short-form video competition with TikTok

3. LinkedIn Architectureโ€‹

Professional Network Focusโ€‹

LinkedIn HLD:
โ”œโ”€โ”€ Profile Service (professional profiles, skills)
โ”œโ”€โ”€ Connection Service (professional networking)
โ”œโ”€โ”€ Feed Service (professional content timeline)
โ”œโ”€โ”€ Job Service (job postings, applications)
โ”œโ”€โ”€ Messaging Service (professional communication)
โ”œโ”€โ”€ Learning Service (courses, certifications)
โ”œโ”€โ”€ Sales Navigator (B2B lead generation)
โ””โ”€โ”€ Analytics Service (profile views, post metrics)

LinkedIn Feed Algorithmโ€‹

Goal: Surface professionally relevant content

Ranking Factors:

Content Scoring:
โ”œโ”€โ”€ Professional Relevance (40%)
โ”‚ โ”œโ”€โ”€ Industry alignment
โ”‚ โ”œโ”€โ”€ Job function similarity
โ”‚ โ”œโ”€โ”€ Skill overlap
โ”‚ โ””โ”€โ”€ Company connections
โ”œโ”€โ”€ Engagement Signals (30%)
โ”‚ โ”œโ”€โ”€ Comments > Likes > Views
โ”‚ โ”œโ”€โ”€ Share rate and viral coefficient
โ”‚ โ”œโ”€โ”€ Time spent reading
โ”‚ โ””โ”€โ”€ Click-through rates
โ”œโ”€โ”€ Recency & Freshness (20%)
โ”‚ โ”œโ”€โ”€ Post timestamp
โ”‚ โ”œโ”€โ”€ Trending topics in network
โ”‚ โ””โ”€โ”€ Real-time engagement velocity
โ””โ”€โ”€ Personal Connection (10%)
โ”œโ”€โ”€ 1st/2nd/3rd degree connections
โ”œโ”€โ”€ Direct message history
โ””โ”€โ”€ Profile interaction frequency

Professional Graph Architectureโ€‹

Relationship Mapping:
โ”œโ”€โ”€ 1st Degree: Direct connections (mutual acceptance)
โ”œโ”€โ”€ 2nd Degree: Friends of friends (network expansion)
โ”œโ”€โ”€ 3rd Degree: Extended network reach
โ”œโ”€โ”€ Company Connections: Current/former colleagues
โ”œโ”€โ”€ Educational Connections: Alumni networks
โ””โ”€โ”€ Industry Connections: Professional similarity

Key Differentiatorsโ€‹

  • B2B Focus: Professional content prioritization
  • Skill-Based Matching: Expertise and endorsements
  • Job Marketplace Integration: Recruitment platform
  • Long-Form Content: Articles and professional insights

4. Twitter/X Architectureโ€‹

Real-Time Information Networkโ€‹

Twitter HLD:
โ”œโ”€โ”€ Tweet Service (compose, publish, retrieve)
โ”œโ”€โ”€ Timeline Service (home, mentions, lists)
โ”œโ”€โ”€ Trend Service (hashtags, viral content)
โ”œโ”€โ”€ Search Service (real-time tweet search)
โ”œโ”€โ”€ Notification Service (mentions, likes, retweets)
โ”œโ”€โ”€ Direct Message Service (private messaging)
โ”œโ”€โ”€ Media Service (photos, videos, GIFs)
โ””โ”€โ”€ Advertising Service (promoted tweets/accounts)

Timeline Generation - Fan-out Architectureโ€‹

Challenge: Deliver tweets to millions of followers instantly

Fan-out Strategies:

1. Fan-out on Write (Push)
โ”œโ”€โ”€ User tweets โ†’ Push to all followers' timelines
โ”œโ”€โ”€ Pros: Fast read times, pre-computed timelines
โ”œโ”€โ”€ Cons: Expensive for users with millions of followers
โ””โ”€โ”€ Used for: Regular users (<10K followers)

2. Fan-out on Read (Pull)
โ”œโ”€โ”€ User requests timeline โ†’ Pull from followed accounts
โ”œโ”€โ”€ Pros: Efficient for high-follower accounts
โ”œโ”€โ”€ Cons: Slower read times, compute on demand
โ””โ”€โ”€ Used for: Celebrities, verified accounts

3. Hybrid Approach
โ”œโ”€โ”€ Most users: Fan-out on write
โ”œโ”€โ”€ Celebrities: Fan-out on read
โ”œโ”€โ”€ Mixed timelines: Merge cached + real-time content
โ””โ”€โ”€ Smart caching based on user activity patterns

Real-Time Featuresโ€‹

Live Updates Architecture:
โ”œโ”€โ”€ WebSocket connections for active users
โ”œโ”€โ”€ Server-Sent Events for timeline updates
โ”œโ”€โ”€ Push notifications for mobile apps
โ”œโ”€โ”€ Real-time trending algorithm updates
โ””โ”€โ”€ Live event integration (sports, news, politics)

Objective: Identify viral content and emerging topics in real-time

Factors:

  • Tweet volume velocity (mentions per minute)
  • Engagement rate acceleration
  • Geographic distribution of mentions
  • Influencer participation
  • Breaking news detection

5. Facebook Architectureโ€‹

Multi-Service Platformโ€‹

Facebook HLD:
โ”œโ”€โ”€ User Service (profiles, friends, family)
โ”œโ”€โ”€ News Feed Service (algorithmic timeline)
โ”œโ”€โ”€ Post Service (status, photos, videos, stories)
โ”œโ”€โ”€ Reaction Service (likes, reactions, comments)
โ”œโ”€โ”€ Group Service (communities, discussions)
โ”œโ”€โ”€ Page Service (business pages, fan engagement)
โ”œโ”€โ”€ Event Service (social events, RSVP)
โ”œโ”€โ”€ Marketplace Service (local commerce)
โ”œโ”€โ”€ Messenger Service (chat, voice, video calls)
โ”œโ”€โ”€ Gaming Service (social games, streaming)
โ””โ”€โ”€ Advertising Service (targeted ads, business tools)

News Feed Ranking Algorithmโ€‹

Goal: Maximize user engagement and time spent on platform

EdgeRank Algorithm Evolution:

Modern Feed Ranking (2024):
โ”œโ”€โ”€ Relationship Score (35%)
โ”‚ โ”œโ”€โ”€ Interaction frequency with poster
โ”‚ โ”œโ”€โ”€ Message history and mutual friends
โ”‚ โ”œโ”€โ”€ Profile visits and photo tags
โ”‚ โ””โ”€โ”€ Real-world relationship indicators
โ”œโ”€โ”€ Content Type Performance (25%)
โ”‚ โ”œโ”€โ”€ Video content prioritization
โ”‚ โ”œโ”€โ”€ Live video boost during broadcast
โ”‚ โ”œโ”€โ”€ Image posts vs text-only content
โ”‚ โ””โ”€โ”€ Link click-through rates
โ”œโ”€โ”€ Recency & Timeliness (20%)
โ”‚ โ”œโ”€โ”€ Post timestamp and decay function
โ”‚ โ”œโ”€โ”€ Trending topics and viral content
โ”‚ โ”œโ”€โ”€ Breaking news and real-time events
โ”‚ โ””โ”€โ”€ User's active hours optimization
โ””โ”€โ”€ Individual Preferences (20%)
โ”œโ”€โ”€ Content category preferences
โ”œโ”€โ”€ Historical engagement patterns
โ”œโ”€โ”€ Hiding/unfollowing behavior
โ””โ”€โ”€ Time spent per content type

Social Graph Storageโ€‹

Friend Network Architecture:
โ”œโ”€โ”€ Adjacency Lists: User connections storage
โ”œโ”€โ”€ Graph Databases: Neo4j for complex relationship queries
โ”œโ”€โ”€ Caching Layer: Redis for frequent friend lookups
โ”œโ”€โ”€ Sharding Strategy: Geographic and social cluster-based
โ””โ”€โ”€ Privacy Controls: Granular visibility and sharing settings

6. Common Architectural Patternsโ€‹

Feed Generation Patternsโ€‹

PatternUse CaseProsCons
Push (Fan-out on Write)Regular usersFast readsExpensive writes for influencers
Pull (Fan-out on Read)CelebritiesEfficient writesSlower reads
HybridMixed user baseBalanced performanceComplex implementation

Content Storage Architectureโ€‹

Media Storage Strategy:
โ”œโ”€โ”€ Hot Storage (Recent, popular content)
โ”‚ โ”œโ”€โ”€ SSD-based storage for fast access
โ”‚ โ”œโ”€โ”€ Multiple CDN regions
โ”‚ โ””โ”€โ”€ High replication factor
โ”œโ”€โ”€ Warm Storage (Older, moderate access)
โ”‚ โ”œโ”€โ”€ HDD-based storage
โ”‚ โ”œโ”€โ”€ Regional CDN caching
โ”‚ โ””โ”€โ”€ Reduced replication
โ””โ”€โ”€ Cold Storage (Archive, rare access)
โ”œโ”€โ”€ Glacier/tape storage
โ”œโ”€โ”€ Single region backup
โ””โ”€โ”€ Minimal replication

Notification System Designโ€‹

Push Notification Architecture:
โ”œโ”€โ”€ Event Triggers (likes, comments, mentions, messages)
โ”œโ”€โ”€ User Preference Engine (notification settings)
โ”œโ”€โ”€ Delivery Channels (iOS/Android push, email, SMS, web)
โ”œโ”€โ”€ Rate Limiting (prevent notification spam)
โ”œโ”€โ”€ Personalization (send time optimization)
โ””โ”€โ”€ Analytics (delivery rates, engagement metrics)

7. Search & Discovery Systemsโ€‹

Search Architectureโ€‹

Social Media Search Components:
โ”œโ”€โ”€ Real-time Indexing (new posts/profiles)
โ”œโ”€โ”€ Full-text Search (Elasticsearch/Solr)
โ”œโ”€โ”€ People Search (fuzzy matching, social graph)
โ”œโ”€โ”€ Hashtag/Trend Search (real-time aggregation)
โ”œโ”€โ”€ Semantic Search (ML-based content understanding)
โ””โ”€โ”€ Personalized Results (user context and history)

Recommendation Enginesโ€‹

Content Discovery Strategies:

  • Collaborative Filtering: "Users like you also liked..."
  • Content-Based Filtering: Similar content to user's interests
  • Social Signals: Friends' activities and recommendations
  • Trending Content: Viral and popular posts
  • Geographic Relevance: Location-based content
  • Temporal Patterns: Time-sensitive content optimization

8. Scalability & Performance Patternsโ€‹

Database Architectureโ€‹

Social Media Data Patterns:
โ”œโ”€โ”€ User Data (RDBMS)
โ”‚ โ”œโ”€โ”€ MySQL/PostgreSQL for ACID compliance
โ”‚ โ”œโ”€โ”€ User profiles, settings, relationships
โ”‚ โ””โ”€โ”€ Master-slave replication
โ”œโ”€โ”€ Content Data (NoSQL)
โ”‚ โ”œโ”€โ”€ MongoDB/Cassandra for horizontal scaling
โ”‚ โ”œโ”€โ”€ Posts, comments, reactions
โ”‚ โ””โ”€โ”€ Eventually consistent
โ”œโ”€โ”€ Timeline Data (Cache)
โ”‚ โ”œโ”€โ”€ Redis/Memcached for speed
โ”‚ โ”œโ”€โ”€ Pre-computed user timelines
โ”‚ โ””โ”€โ”€ TTL-based expiration
โ””โ”€โ”€ Media Files (Object Storage)
โ”œโ”€โ”€ S3/GCS for blob storage
โ”œโ”€โ”€ CDN distribution
โ””โ”€โ”€ Geographic replication

Caching Strategiesโ€‹

Multi-Layer Caching:

  • Browser Cache: Static assets (CSS, JS, images)
  • CDN Cache: Media files and popular content
  • Application Cache: User sessions, frequent queries
  • Database Cache: Query result caching
  • Timeline Cache: Pre-computed user feeds

Load Balancingโ€‹

Traffic Distribution:
โ”œโ”€โ”€ DNS Load Balancing (geographic routing)
โ”œโ”€โ”€ Layer 7 Load Balancing (application-aware)
โ”œโ”€โ”€ API Gateway (rate limiting, authentication)
โ”œโ”€โ”€ Microservice Mesh (service-to-service)
โ””โ”€โ”€ Database Load Balancing (read/write separation)

9. Real-Time Featuresโ€‹

Live Updates Architectureโ€‹

Real-Time Communication:
โ”œโ”€โ”€ WebSocket Servers (persistent connections)
โ”œโ”€โ”€ Server-Sent Events (one-way updates)
โ”œโ”€โ”€ Message Queues (Kafka, RabbitMQ)
โ”œโ”€โ”€ Pub/Sub Systems (Redis, Apache Pulsar)
โ””โ”€โ”€ Push Notification Services (FCM, APNS)

Event-Driven Architectureโ€‹

Key Events:

  • User actions (post, like, comment, share)
  • System events (trending detection, spam filtering)
  • External events (breaking news, sports scores)
  • Scheduled events (content cleanup, analytics)

10. Content Moderation & Safetyโ€‹

Automated Content Moderationโ€‹

Multi-Layer Moderation:
โ”œโ”€โ”€ Upload Filters
โ”‚ โ”œโ”€โ”€ Image recognition (inappropriate content)
โ”‚ โ”œโ”€โ”€ Text analysis (hate speech, spam)
โ”‚ โ”œโ”€โ”€ Video content scanning
โ”‚ โ””โ”€โ”€ Audio content analysis
โ”œโ”€โ”€ Post-Upload Monitoring
โ”‚ โ”œโ”€โ”€ User reporting systems
โ”‚ โ”œโ”€โ”€ Automated flagging algorithms
โ”‚ โ”œโ”€โ”€ Community-based moderation
โ”‚ โ””โ”€โ”€ Expert human review
โ”œโ”€โ”€ Behavioral Analysis
โ”‚ โ”œโ”€โ”€ Bot detection algorithms
โ”‚ โ”œโ”€โ”€ Fake account identification
โ”‚ โ”œโ”€โ”€ Coordinated inauthentic behavior
โ”‚ โ””โ”€โ”€ Spam pattern recognition
โ””โ”€โ”€ Global Policy Enforcement
โ”œโ”€โ”€ Regional content compliance
โ”œโ”€โ”€ Age-appropriate content filtering
โ”œโ”€โ”€ Misinformation detection
โ””โ”€โ”€ Violence and extremism prevention

11. Analytics & Machine Learningโ€‹

User Behavior Analyticsโ€‹

Data Collection:
โ”œโ”€โ”€ User Interactions (clicks, scrolls, time spent)
โ”œโ”€โ”€ Content Performance (engagement rates, reach)
โ”œโ”€โ”€ Social Graph Analysis (connection patterns)
โ”œโ”€โ”€ Device and Platform Usage
โ””โ”€โ”€ Geographic and Temporal Patterns

ML Applications:
โ”œโ”€โ”€ Feed Ranking Algorithms
โ”œโ”€โ”€ Content Recommendation Systems
โ”œโ”€โ”€ Ad Targeting and Optimization
โ”œโ”€โ”€ Spam and Abuse Detection
โ”œโ”€โ”€ Trend Prediction and Analysis
โ””โ”€โ”€ User Lifetime Value Prediction

12. Platform-Specific Innovationsโ€‹

Instagramโ€‹

  • Stories Architecture: Ephemeral content with 24-hour TTL
  • Reels System: Short-form video with music integration
  • Shopping Integration: E-commerce within social posts
  • AR Filters: Real-time face tracking and augmentation

LinkedInโ€‹

  • Professional Graph: Skill-based connections and endorsements
  • Content Quality Filters: Professional relevance scoring
  • Job Matching Engine: AI-powered recruitment platform
  • Learning Platform Integration: Course completion tracking

Twitter/Xโ€‹

  • Real-Time Trending: Sub-minute trend detection
  • Character Limit Optimization: Concise content prioritization
  • Thread Architecture: Connected tweet sequences
  • Spaces Integration: Live audio conversation platform

Facebookโ€‹

  • Multi-App Integration: WhatsApp, Instagram, Messenger sync
  • VR/AR Integration: Metaverse platform development
  • Marketplace Platform: Local commerce integration
  • Gaming Ecosystem: Social gaming and streaming

Key Architecture Principlesโ€‹

โœ… Event-Driven Design: Real-time updates and notifications โœ… Microservices Architecture: Independent service scaling โœ… Content-First Storage: Optimize for media-heavy workloads โœ… Feed Personalization: ML-driven content ranking โœ… Global CDN Strategy: Low-latency content delivery โœ… Horizontal Scalability: Handle traffic spikes and growth โœ… Real-Time Processing: Live updates and trending detection โœ… Privacy by Design: User data protection and control

Bottom Line: Social media platforms are complex distributed systems that must balance personalization, real-time interaction, content discovery, and safety at unprecedented scale while maintaining sub-second response times for billions of daily active users.